The dynein cortical anchor Num1 activates dynein motility by relieving Pac1/LIS1-mediated inhibition
نویسندگان
چکیده
Cortically anchored dynein orients the spindle through interactions with astral microtubules. In budding yeast, dynein is offloaded to Num1 receptors from microtubule plus ends. Rather than walking toward minus ends, dynein remains associated with plus ends due in part to its association with Pac1/LIS1, an inhibitor of dynein motility. The mechanism by which dynein is switched from "off" at the plus ends to "on" at the cell cortex remains unknown. Here, we show that overexpression of the coiled-coil domain of Num1 specifically depletes dynein-dynactin-Pac1/LIS1 complexes from microtubule plus ends and reduces dynein-Pac1/LIS1 colocalization. Depletion of dynein from plus ends requires its microtubule-binding domain, suggesting that motility is required. An enhanced Pac1/LIS1 affinity mutant of dynein or overexpression of Pac1/LIS1 rescues dynein plus end depletion. Live-cell imaging reveals minus end-directed dynein-dynactin motility along microtubules upon overexpression of the coiled-coil domain of Num1, an event that is not observed in wild-type cells. Our findings indicate that dynein activity is directly switched "on" by Num1, which induces Pac1/LIS1 removal.
منابع مشابه
Motor- and Tail-Dependent Targeting of Dynein to Microtubule Plus Ends and the Cell Cortex
BACKGROUND Cytoplasmic dynein mediates spindle positioning in budding yeast by powering sliding of microtubules along the cell cortex. Although previous studies have demonstrated cortical and plus-end targeting of dynein heavy chain (Dyn1/HC), the regulation of its recruitment to these sites remains elusive. RESULTS Here we show that separate domains of Dyn1/HC confer differential localizatio...
متن کاملThe role of the lissencephaly protein Pac1 during nuclear migration in budding yeast
During mitosis in Saccharomyces cerevisiae, the mitotic spindle moves into the mother-bud neck via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. Here we show that Pac1, the yeast homologue of the human lissencephaly protein LIS1, plays a key role in this process. First, genetic interactions placed Pac1 in the dynein/dynactin pathway. Second, cells lacking Pac...
متن کاملQuantitative analysis of Pac1/LIS1-mediated dynein targeting: Implications for regulation of dynein activity in budding yeast.
LIS1 is a critical regulator of dynein function during mitosis and organelle transport. Here, we investigated how Pac1, the budding yeast LIS1 homologue, regulates dynein targeting and activity during nuclear migration. We show that Pac1 and Dyn1 (dynein heavy chain) are dependent upon each other and upon Bik1 (budding yeast CLIP-170 homologue) for plus end localization, whereas Bik1 is indepen...
متن کاملMitochondria-driven assembly of a cortical anchor for mitochondria and dynein
Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria-endoplasmic reticulum [ER]-cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters pers...
متن کاملMcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast
During meiotic prophase I of the fission yeast Schizosaccharomyces pombe, oscillatory nuclear movement occurs. This promotes homologous chromosome pairing and recombination and involves cortical dynein, which plays a pivotal role by generating a pulling force with the help of an unknown dynein anchor. We show that Mcp5, the homologue of the budding yeast dynein anchor Num1, may be this putative...
متن کامل